
When considering how to best provide access to the target system,

embedded system developers often have two choices: on-chip emula-

tion or ROM monitors. There are advantages and disadvantages with

either approach which must be carefully considered when building an

integrated debug environment.

On-Chip Emulator vs. ROM Monitors

For processors that don't have on-chip emulation support, a method

that is often used is to couple the TLA700 logic analyzer with a ROM

monitor that resides in the target system ROM and communicate with

the software debugger running directly on the TLA700's integrated

Windows® 95-based PC.

A ROM monitor provides run control of the target system. Typical fea-

tures include setting breakpoints, single-stepping, displaying program

code, display and modification of program data, stack backtrace, as

well as loading code into the target system. It must be coupled with a

logic analyzer for real-time trace.

A ROM monitor consists of two pieces. The software debugger runs on

the developer’s computer. It’s fairly tightly coupled with the program

source code and symbol database to provide a high-level view of the

program execution. The other piece is the monitor program that actu-

ally controls the target system and provides access to its resources.

The monitor program typically runs in ROM on the target system,

which is why it’s called a ROM monitor. Compared with the newer on-

chip emulators, the ROM monitor offers essentially the same feature

set. However, their different implementations lead to some subtle but

important differences in behavior that can have a substantial impact

on the behavior of a real-time embedded system.

ROM-based monitors are implemented as a set of interrupt and

exception handlers that cause the developer's program to be sus-

pended while the monitor program runs. Once the monitor program is

in control, it can access target system resources and provide debug-

ging features such as viewing memory or processor registers.

This implementation produces intrusion into the target system on sev-

eral levels. First and most obviously, the ROM monitor takes up

address space. This is often not a problem because ROM monitors are

typically fairly small (usually less than 16 KB), and can usually be relo-

cated to accommodate a particular system’s memory configuration.

Secondly, the ROM monitor uses interrupt and exception vectors

which would normally be available to the target system. This may be

useful in the early phases of development, before the program has its

own interrupt and exception handlers. A more mature system may run

into conflicts supporting its own interrupt structure along with the

monitor program.

Access to the
Target System

Technical Brief

www.tektronix.com1

On the other hand, ROM monitors do have certain advantages com-

pared with on-chip emulators. Because the ROM monitor is integrated

with the application software and perhaps an operating system, it may

be able to provide additional insight into the target system. In particu-

lar, it may be better able to support multi-tasking debugging features

such as task-specific breakpoints as well as display and modification

of operating system data structures.

Also, it’s important to note that the ROM monitor runs at some priority

within the priority scheme of the target system’s processor. This pro-

vides the developer with a tremendous amount of flexibility for debug-

ging real-time systems while handling external interrupts. The monitor

priority can be lowered to allow critical interrupt routines to be serv-

iced while the monitor program is running. This may be absolutely

essential for debugging certain real-time applications, which cannot

hold off external interrupts without crashing the target system.

Conversely, the monitor priority can be raised so that breakpoints can

be set in lower priority interrupt handlers.

In contrast, many on-chip emulators do not allow any external inter-

rupts to be serviced while debugging the program. While in back-

ground mode, all normal processor activity is suspended. This may not

be acceptable for a target system that must service interrupts or that

is relying on bus activity to refresh dynamic RAM. On the other hand,

on-chip emulators don’t require any address space or exception vec-

tors. This autonomy from the target system program can be quite use-

ful. An on-chip emulator never has to be designed into the target sys-

tem. It will never be taken out because of board space requirements or

a resource conflict. It's always there if you need it, even after a design

moves into production.

The Logic Analyzer and On-Chip
Emulators vs. ROM Monitors

Neither on-chip emulators nor ROM monitors are capable of making

real-time measurements or providing a real-time trace. A logic analyz-

er is required to observe execution in the target system without inter-

rupting the executing program. In order to correlate the code that the

embedded software developer wrote with the executed code that was

acquired by the logic analyzer, the TLA700 Series incorporates High-

Level Language (HLL) source code support. This combination allows

complex trigger setups to be specified in terms of high-level program

symbols. The resulting data displayed by the TLA700 Series shows the

HLL source code that were executed by the target system.

The connection between the logic analyzer and either the on-chip

emulator or ROM monitor can be made more powerful by configuring

the TLA700 logic analyzer to interact in real-time with the target sys-

tem. The debugger/on-chip emulator can be programmed to assert a

signal that the TLA700 will recognize through either its Trigger In or

Signal In port. Conversely, the TLA700 can assert a signal to interrupt

or stop the software debugger/on-chip emulator. This can be useful for

entering the on-chip emulator’s background debug mode or the ROM

monitor after a sequence of function calls with a specific set of param-

eters are passed on the stack.

Although the hardware breakpoints offered by a logic analyzer are the

least intrusive form of breakpoint, it’s important to note that they too

have a set of limitations. The most obvious problem with hardware

breakpoints is called “skid.” It takes time for the trigger event to prop-

agate through the logic analyzer and back to the processor. The result

is that the break occurs a few clock cycles after the trigger event.

Software breakpoints are required for precise breaks in execution.

Hardware breakpoints provided by the logic analyzer can also be trou-

blesome if the processor implements some sort of pre-fetching

scheme, such as pipelining or caching. Since hardware breakpoints

are based on external bus-level activity, the breakpoint occurs in

response to the instruction or data being fetched, not when it’s actual-

ly executed. If an instruction is fetched, but never executed, a hard-

ware breakpoint may occur at the wrong place.

Breakpoints: Software vs. Hardware

The key to embedded system debug is having control of the target sys-

tem’s processor. The breakpoint is the key mechanism to gaining con-

trol of a running target system that implements all monitor functions.

There are two types of breakpoints: hardware breakpoints and soft-

ware breakpoints. Hardware breakpoints, which require either dedicat-

ed circuitry or external instrumentation, are used to stop processor

execution when the processor makes an external access; e.g., “break

on memory read.” Hardware breakpoints, however, cannot tell the

developer if a particular portion of code that was fetched was neces-

sarily executed. Software breakpoints, which use the exception pro-

cessing instructions of the target processor (e.g., TRAP instruction),

are used to stop processor execution only when executed by the

processor. Software breakpoints, however, cannot tell the developer if

an external access occurred.

Access to the Target System
Technical Brief

www.tektronix.com2

To successfully set a software breakpoint, the software debugger must

be able to write to the memory location specified. Therefore, software

breakpoints cannot be set in ROM. Also, there will be unexpected

results using software breakpoints in the presence of an instruction

cache. If the memory is changed, but not the cached copy, the break-

point will not be executed.

To alleviate some of the pitfalls of software breakpoints, more and

more processors include breakpoint capabilities as part of their on-

chip emulation capabilities. These typically take the form of special

purpose debug registers that can be loaded with an instruction

address. When an instruction at that address gets executed, the soft-

ware debugger is entered. This allows setting breakpoints in ROM-

based systems.

On-chip emulator breakpoints are fairly limited in number. On some

processors, the debug breakpoint exception occurs after the instruc-

tion is executed. This is in contrast to a software breakpoint. When a

software breakpoint is hit, the processor’s program counter is backed

up and the original instruction is restored in memory. The effect is that

execution is interrupted before the instruction at the specified address.

On-chip emulator breakpoints may also support setting breakpoints

based on data values rather than instruction addresses. They may also

include some basic status information such as read/write and data

access size. Data breakpoints offer some of the capability of hardware

breakpoints which is what a logic analyzer is often used for; however,

the data breakpoints offered by a logic analyzer can be very sophisti-

cated compared to the very simple capability offered by on-chip emu-

lation data breakpoints.

Additional Logic Analyzer and On-chip
Emulation Support/ROM Monitor
Measurements

In addition to full-speed or real-time trace and hardware breakpoints,

logic analyzers provide two other key measurements that complement

on-chip emulators/ROM monitors.

Stack Trace Back. Software debuggers can provide the calling

sequence of any functions that have not finished executing; i.e., their

calling address still resides on the stack. Once the function is off the

stack, however, any information is lost to the software debugger. Given

the real-time trace capability of a logic analyzer, it can display the

exact calling sequence of all routines, whether still on the stack or not

(see Figure 1).

Timing of Code. Newer logic analyzers have built-in counter/timers that

run at full-speed, thereby providing timing resolution down to several

nanoseconds (e.g., 4 ns on TLA700). If your code has specific execu-

tion requirements such as interrupt service handlers or algorithms that

must execute within a specified time window, you can use the logic

analyzer’s high-speed counter/timers to verify if your code meets

specifications. Coupled with a software debugger, you can change the

test conditions, thereby “stress-testing’’ your software to see how it

performs under a variety of conditions.

Conclusion

The digital system developer should give careful consideration to the

impact of how debug tools will access their target system. Today’s mod-

ern logic analyzers, such as the TLA700, support a variety of hardware

access methods such as on-chip emulation or ROM monitors. The inte-

grated debug approach offered by the TLA700 provides both hardware

and software breakpoints plus critical measurements that are important

to the successful debug and validation of modern digital systems.

Access to the Target System
Technical Brief

www.tektronix.com 3

main ()

a

b

c

d

ef

Software
Debugger
Display

Logic Analyzer
Display

main ()

c

d

f

main ()

a

b

a

main ()

c

d

e

d

f

Code
Execution

Figure 1. Real-time trace capability of a logic analyzer.

Access to the Target System
Technical Brief

www.tektronix.com4

Contact Tektronix:

ASEAN Countries & Pakistan (65) 6356 3900

Australia & New Zealand (65) 6356 3900

Austria +43 2236 8092 262

Belgium +32 (2) 715 89 70

Brazil & South America 55 (11) 3741-8360

Canada 1 (800) 661-5625

Central Europe & Greece +43 2236 8092 301

Denmark +45 44 850 700

Finland +358 (9) 4783 400

France & North Africa +33 (0) 1 69 86 80 34

Germany +49 (221) 94 77 400

Hong Kong (852) 2585-6688

India (91) 80-2275577

Italy +39 (02) 25086 1

Japan (Sony/Tektronix Corporation) 81 (3) 3448-3111

Mexico, Central America & Caribbean 52 (55) 56666-333

The Netherlands +31 (0) 23 569 5555

Norway +47 22 07 07 00

People’s Republic of China 86 (10) 6235 1230

Poland +48 (0) 22 521 53 40

Republic of Korea 82 (2) 528-5299

Russia, CIS & The Baltics +358 (9) 4783 400

South Africa +27 11 254 8360

Spain +34 (91) 372 6055

Sweden +46 8 477 6503/4

Taiwan 886 (2) 2722-9622

United Kingdom & Eire +44 (0) 1344 392400

USA 1 (800) 426-2200

For other areas contact Tektronix, Inc. at: 1 (503) 627-7111

Copyright © 2002, Tektronix, Inc. All rights reserved. Tektronix products are covered by U.S. and
foreign patents, issued and pending. Information in this publication supersedes that in all
previously published material. Specification and price change privileges reserved. TEKTRONIX and
TEK are registered trademarks of Tektronix, Inc. All other trade names referenced are the service
marks, trademarks or registered trademarks of their respective companies.
03/02 OA/XBS 52W-12479-1

For Further Information
Tektronix maintains a comprehensive, constantly expanding collec-
tion of application notes, technical briefs and other resources to help
engineers working on the cutting edge of technology. Please visit
www.tektronix.com

